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In this workowe demanstiate two poterdial dangers of multiple time
stop techniques far numerical integration of differential equations. This
idea of using different {ime steps for different interactions was proposed
in 1978 for molecutar dynamics but undoubtedly has other useful
applications, The use of multiple time stepping with the popular Verfet
method was proposed in a 1991 paper. However, the method
advocated in this paper does not retain the symplectic {(or canonical)
property of the Verlet method, which is an abstract property satisfied by
the fiow of any Hamiltontan system, of which molecular dynamics is an
example. Recent work teported in the literature suggests that this
property is important for the long-time integration of Hamiltonian
dynamical systems. We perform experiments on linear and nenlinear
probiems comparing symplectic and nonsymplectic multiple time step-
ping extensions of the Verlet method. We observe that in the nonsym-
plectic case either instability or dissipation becomes evident after a long
integration. However, gur experiments also indicate that it is quite
possible to obtain an artificial “resonance” for the symplectic method
that is much worse than that for the nonsymplectic methods.  © 1993

Academic Press. Inc.

1. INTRODUCTION

In this work we demonstrate two potential dangers of
multiple time step techniques for numerical integration of
differential equations. The use of different time steps lor dif-
ferent interactions was proposed | 10 ] in 1978 for molecular
dynamics (M D), but the idea undoubitedly has other uselul
applications. In molecular dynamics only a small percent-
age of interactions rcquire a very small step size in order to
be resolved accurately; for most interactions much larger
time steps are adequate. This idea is developed further in a
recent paper [67, which uses multiple time steps in a way
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that generalizes the popular Encke/Stérmer/lcapfrog/Verlet
method. The theme of this paper is to evaluate different clec-
trostatic interactions with dilferent time increments depend-
ing on the distance. Pairs of particles are grouped into
distance classes whose memberships change as the particles |
move, Method coefficients are chiosen so that if all particle
pairs were to belong to one distance class, the method
would reduce to a single time step Verlet method. A speedup
by a factor of 5.4 was observed with no significant loss of
accuracy. (A popular alternative is to ignore compietely
long-range interactions beyond a certain “cut off” distance,
but this can significantly change the behavior of the
molecule [ I, p. 155].)

Recent work reported in the literature suggests that for
the long-time integration of Hamiltonian dynamical
systems, such as occurs in molecular dynamics, one should
use methods that preserve the symplectic (or canonical)
property of the flow, The multiple time stepping method
advocated in [67 does not retain the symplectic property of
the Verlet method and it requires additional storage of past
positions. We have performed experiments comparing this
method to a symplectic method and to another nonsymplec-
tic method, neither of which require the additional storage.
Experiments on lincar and nonlinear problems (very small
systents that model bondlength and Lennard-Jones interac-
tions, respectively) show striking superiority of the symplec-
tic methods on long enough time intervals. We observe that
for nonsymplectic multiple time stepping either instability
or dissipation becomes evident afier a long integration.

On the other hand, it is suggested [ 6] that resonance may
be a problem for the symplectic method, and we confirm
this for linear and nonlinear problems. We show that it is
quite possiblc to obtain an artificial “resonance” for the
symplectic method that is much worse than that for the non-
symplectic methods. This situation arises because the large
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time step discretization (which resolves the slowly varying
interactions) introduces periodic impulses of a low enough
frequency to excite natural high frequencies arising from the
fast interactions, which are being integrated with a smaller
time step. The resonance waxes and wanes on a short time-
scale. However, it might be the case that the irregularities of
a large nonlinear system make such resonance very unlikely.

The simple experiments reported in this paper are for
situations in which the step size used for each interaction
remains fixed. This is insufficient for nonbonded interac-
tions, and we are currently investigating a strategy for per-
mitting the step size to increase or decrease as the distance
between interacting particles changes without sacrificing
symplecticness.

Section 2 states the equations used for molecular
dynamics, and Section 3 defines the property of being
symplectic. Section4 describes the multiple time step
algorithms, and these are compared in Sections 5 and 6 with
three numerical experiments.

2. MOLECULAR DYNAMICS SIMULATIONS

A molecular dynamics simulation of A" particles based
on principles of Newtonian mechanics requires the solution
of the following system of second-order ordinary differential
equations:

2

mkﬁrk(t)=Fk(r], k=12, .,4, (1)
where m,, r,, and ¥, are the mass of, position of, and force
acting upon particle k, respectively. The force F,=
-V, V(r,,r;, .., 1), where the potential energy V is a sum
of contributions from nonbonded two-body forces and
bonded 2-, 3-, and 4-body forces. The nonbonded forces
consist of Coulomb forces due to charges (or assigned frac-
tional charges) of particles and the Van der Waals forces,
and the number of such interactions is §.47(.#" — 1), which
is much greater than the number of bonded interactions.

The Verlet algorithm [12] is a standard way of solving
system (1). It obtains the positions of the particles at dis-
crete time steps, th, where i is the step number and # is the
size of an individual time step. Defining the vector x =
(rf,r3,.,v5)7 and the vector f=(F]/m,,F1/m,, ..,
Fl./m )", the algorithm approximately satisfies X(ih)=
f(x(ih)) for each step ¢ of the simulation. The formula used
by the Verlet algorithm to obtain approximations x, = x(i#)
to new particle positions is

Xip1=2%,—Xx,_; + i1, (2)

which is second-order accurate, If velocities are wanted, the

Verlet algorithm specifies that they be calculated with
Xip1— X,

x= R, (3)
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Typically one would start a simulation knowing x, and
Xy, 50 Eq. (3) can be used to eliminate the reference to x _ |
from (2} to obtain for x, Eq. (7} of Section 4.1.

3. SYMPLECTIC INTEGRATION METHODS

Hamiltonian systems of differential equations have
special properties that are retained by symplectic (also
called canonical) integration methods. A Hamiltonian is a
function Hiq, p), where q, pe R“. The system of differential
equations associated with H is defined to be [9]

oH
dq;’

da,_0H b, _

- L) ] s_ g_ d. 4
dar  dp; dt : @)
(Here subscript i refers to the ith element of a vector.)
Equivalently, (4} can be written as

0 I
i=J.VH  where z=(q), J=( ").
p -1, 0

In molecular dynamics simulations, the Hamiltonian of
interest is the formula for total energy expressed as a func-
tion of positions and momenta. There are d = 3.4” degrees of
freedom, q contains the position of each particle (referred to
as x earlier), and p contains the momentum of each particle.
Define M to be the diagonal matrix of particle masses, with

M3k72,3k72 =My o= My =m, k=1,2, ., 4"
Then, the Hamiltonian is given by
H{g, p)=3p"M 'p+ ¥(q), (5)

where the first term is the kinetic energy and the second is
the potential energy. The force is — VV{g).

The t-flow of a Hamiltonian system [9] is the mapping
¢, from z(0) to z(¢) which is the solution of (4} at time 7 with
initial values z{0). A quick example, from [9], is the
Hamiltonian with d=1 and H(q, p) = }q° + } p*, for which
the flow is

gcost+ psint
P4 p)-(fq sin 1+ p cos r)'

Flow of a Hamiltonian system has an area-preserving
property [2]. Let X be an oriented two-dimensional surface
in R™. In the case of a Hamiltonian with one degree of
freedom, the signed area of X is equal to the signed area of
¢, (L), With multiple degrees of freedom, the sum of the
signed areas of the projection of 2" onto the (p,, g;)-plane,
i=1,2,..,d, is preserved. Any mapping that possesses this
property for arbitrary 2 is called symplectic or canonical.
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One way Lo check if a mapping y is symplectic is to see if
(V)T H(Vy) =4, (6)

where Vy is the Jacobian matrix of the mapping. This equa-
tion and other characterizations are discussed in [9]. It is
easy to verify that {6) holds for the example earlier.

It will be useful to know that the composition of two
symplectic mappings ¢ = ¢! ¢! is also symplectic and
that the inverse of a symplectic mapping is symplectic.

Numerical approximations v, to ¢, are sought to
calculate positions and momenta through iteration,

z, =z, =Wl - Walze) - ) z‘ﬁtwrl)h(zo)-

n+1

It is desirable for ¢, to be symplectic itself, at least disregar-
ding round-off error; this mimics certain properties of the
physical system. For example, because of the area-preserva-
tion of phase space, the system will not “damp out” under
repeated iteration. In particular, there is considerable
experimental evidence [3,7,8] suggesting symplectic
methods perform better than nonsymplectic ones.

4. MULTIPLE TIME STEP ALGORITHMS

Three multiple time step methods are compared: Verlet-I
and Verlet-IT, which are introduced by Grubmiiller er al.
[6], and Verlet-X, which is new. Simplified versions of these
algorithms will be presented where it is assumed that there
are only two distance classes, “near” and “far.” Forces f*
in the “near” class are those that are changing rapidly, so
they will be evaluated every time step. The rest of the forces
£ are in the “far” class and will be evaluated only every
macro-step, because they change more slowly. The length of
a macro-step is N times the length of a normal time step, for
some integer N. The more general case would be to have an
arbitrary number of distance classes. In [6], distance classes
are numbered zero through », with forces in class j (referred
to as %) evaluated every 2/ time steps and N = 2"

Because particles move during the course of a simulation,
forces between them may change distance classes. But in this
paper membership will be considered fixed. Problems that
arise even with this easier special case are illustrated in
Sections 5 and 6.

A constraint imposed on multiple time step algorithms by
[6] is that they satisfy “Verlet equivalence.” This means
that if all forces are in a class with step size Nk, then the
method should give the same results as the standard Verlet
algorithms with step size Nh.

4.1. Verlet Algorithm

The standard Verlet algorithm, given earlier with (2) and
{3), can be rewritten in such a way that velocities are made
use of in the calculation of new positions. The description of
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distance-class methods will use the formulas derived below,
but differ in how the f term (which specifies the forces to
evaluate) is defined.

First, to obtain an equation for x,, ;, use (3) to eliminate
;1 from (2). Rearrangement yields

13

X

2

h
X =X+ A%+

5 (7

Then, to obtain an equation for X, , use (3) and later plug
in (2) to see

X, 7x£=xf+§h_xi _XHI;hXFI
=xi+2_2xi+l +xi+xi+1 —2X;+ X,
2h 2h
!
= ﬂ (hsz 1+ hsz)-

Rearranged, this is

. . Rk
xi+l=xi+5fi+5fi+l-

(8)
Equations {7) and (8) minimize round-off error and define
a method proposed in [11].

Finally, notation is used that will be convenient for
distance-class methods, and an intermediate velocity term is
introduced to obtain

5‘M+k+uz=f‘m+k+§fm+k (9)
Xyivket =Xpnise AR yipii1p (10)
) , h
xNi+k+[=er’+k+l,"2+5fNi+k+ls (i)

where f is the current macro-step, k ranges from zero to
N — 1, and Ni+ k is the current time step. For the standard
method (without multiple time steps) f™" is evaluated every
step, so the force term is just

fN:‘+j =" Xy s j) + frar(xNHj)-
Equation (9) is the transformation

q

iq, p)= h
(g, p) p+§Mf(q)

which maps

( Xnit+k )H( Xnisk )
MX ik MXpy viin



DANGERS OF MULTIPLE TIME STEP METHODS

By using (6) and the fact that the Jacobian matrix of Mfis
symmetric {because it is the Hessian of the function — V),
Yt is symplectic. Mapping 1?1 for Eq. (10) is similarty
seen to be symplectic; ' is used again for {11). Therefore,
the Verlet method is symplectic, since it is just the
compaosition of these mappings,

VESISk IS VAR |

4.2, Verlet-I Algorithm

This method scales forces in each class by the ratio of its
step size to the smallest step size. In 6],

! ! '
fNi+j= Z 2 5j’ziu,,.2uf( J(xNi+2f|_j/2-'_|)=
=0
where 8, ;=1 if i = j, and 0 otherwise.
In general the time steps of each class need not be 4 times
some power of two. Using the assumption of having only
two different time steps, one obtains

fo o= {fmar(xm-\-j) + Nfrar(x i i=0,
METTAN X ey ), j=1,2.,N—1,
The mapping cerresponding to one macro-step of Verlet-1is
the composition of simple symplectic mappings and thus is
also symplectic.

Note that “far” forces are felt only at the beginning and
end of each macro-step, A physical interpretation would be
two equally large impulses at time { = Nih— and t = Nih+ .
A possible problem arising from this scheme will be
discussed and demonstrated in Section 6.

4.3. Verlet-II Algorithm

This algorithm includes forces from the previous macro-
step to increase accuracy, and to spread out the effects of
“far” forces over the entire macro-step (unlike Verlet-1).
Forces are to be of the form

| FUPES Raial b SIS ajffar(xm) + bjffar(x wiew)

for some choice of coefficients a; and b,. The idea is to
approximate linear extrapolation of the “far” force, giving

ajfrar(xm) + bjffar(x Nie )

A1) + % (

frar(xm)"ffar(er—N))- (12)

However, the choice of a; and b, that satisfies extrapolation
exactly gives a method that does not satisfy Verlet equiv-
alence [6]. The Verlet-II algorithm is derived by finding

381/109/2-12
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coefficients that are as close as possible to those in linear
extrapolation with the constraint of Verlet equivalence.

The result of a least-squares derivation obtained in [6]
for a full set of distance classes is

n
{ {
fvia = 2 (@255 T 2t )
i=0

() )
+ 0,0 2§ X ity 21D

with coefficients

ath=3.20+1 (22"V21+ 1)‘_]'(21_2)
/ R+ DR¥ 1) T
pn AT 432 1+ 6j2 - 1)
;o ’

22.’+l +1
With our assumption that forces are in the innermost

(f® = {2y or outermost (f ={™") distance classes only,
this leads to

fNi+j=a({)ﬁ){near(le‘-‘-.j)_*_b})ﬂ)fnear(xNiv%‘i_l]
+ @I (% ) + BT (X, ).

Note that ai’ =1, bi* =0, and N =27, so the superscripts
are dropped and the simplified version of Verlet-11 is

fpiv ;= fnear(":vm NEs ajffar(xm) + bjfrar(er—N)s

(N?=N+1)—-j(N=2)

4= e + )
p AN HIN- )4 6i(N-1)
7 2N+ 1 :

This method is not symplectic. One attractive feature it has,
however, is that the coefficients a; and b, are bounded,
unlike coefficients used in Verlet-I and Verlet-X, which
makes Verlet-11 less sensitive to variations in the forces.

4.4, Verler-X Algorithm

This algorithm also approximates linear extrapolation.
Rearrange the left side of {(12) to obtain

(a;+b) £ (x ) — bj(frar(xm) — £ (% - )

szar(xm)+%{(frar(xm)_ffar(xNirN)). (13)

Presumably |[f%7(x ) — % (X, y ) € 1E* (x4)ll, s0 the
error will be smaller if the left terms of (13) match.
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This means a,+b,=1. The formulas for satisfying Verlet
equivalence derived in [6, p. 129] are

N—1

Z (N_k)ak=N29
k=0

N—1 N—1
Y ka,+ Y (N—k)b, =0,

k=1 k=0

(14)

N—1
Y kb, =0.

k=1

With the given restriction on a, and b,, the equations above
reduce to

N NN-1) v IN—1

S kag=———, ay="—. (15

k=0 k=10
If b,=b,=--- =by_, =0 (which saves storage because
£ (x . _ ) can be discarded before f™(x,) is computed),
then a, =a,= --- =a,_, = 1. The condition on the left in

(15) is now satisfied, and the right condition gives a,=
(N +1)/2 and b, = (1 — N)/2. The method is then

ar N+l ar 1-N ar
fre (fo+j)+Tff (XN:‘)J"TfI (X niow)

j=0,
£ (X iy )+ (x50,
j=1,2, . N—1.

th‘+j =

This method is not symplectic either.

4.5. Starting Verlet-II and Verlet-X

The Verlet-I algorithm is self-starting. Verlet-IT and
Verlet-X, on the other hand, require ™ (xy,_ »), which is
not available for the first macro-step.

One possibility, used in [6], is to begin the simulation
with all forces in the “near” class, and move “far” forces out
to farther classes as the run progresses. The problem with
this idea is that Verlet equivalence will be violated when
switching methods at time = Nh. This can be fixed by
allowing the force used at the end of one time step (in
Eq. (11)) and the beginning of the next (in Eq. (9)) to be
different as long as the velocity used in (10) works out to be
the same. This matters only between macro-steps when
switching methods. Let f}; be the force used in (9) when
k=0and f,, , the force in (11) when k= N — 1. Using

f5=1""xn)+ 2af F2(x ) + 2boifmr(x1w— N
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it is then required that

_ +_
a, +a, =dag,

To determine ai and b7 that satisfy Verlet equivalence,
Eq.(9) through (11) are used. Assuming f™* =0, onc
macro-step of an extrapolation method yields

N—1
iNi+N=*Ni+h(bJ+ 2 bk) 2 (X v w)
k=1
Nl

+h(a0++ Y a*+b0)ff“(xm.)

k=1
+ hao_frar(xNHN),

~-1
Xnipnw =Xyt Nh*m‘""hz (Nbe;" + Z (N-k) bk) ffal"(’(N;'-N)
k

=1

N—1
+ k2 (Nag'+ Y (Nk)a,,) £ (x ).
P

And comparing the above to one step of standard Verlet
with step size Nk (to ensure Verlet equivalence) gives

N—-1
ba + Y b =0,
k=1
N—1 N
al + Y ac+by =—,
k=1 2
_ N
a; =—
0 2’
N—1
NbF + Y (N—k)b,=0,
k=1

N—=1 2

N
Naj + ¥ (N—k)a,=—.
k=1 2

Equations (14) are used to eliminate 3Y_ ! ka,, Y24 by,
and Y2~/ kb,, to obtain

a0=

Es

Note that for the Verlet-X method b5 = 0. This is impor-
tant because otherwise T™{x,, ») would be needed after
f®7(x ), ruining the storage-saving feature of Verlet-X.

5. NUMERICAL EXPERIMENTS: LONG-TIME EFFECTS

The model problems described below are the simplest
systems that illustrate the effects of the aigorithms tested.
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spring 1 spring 2

pazrticle 1 particle 2 particle 3

FIG. 1. Spring experiment, system of particles.

The foliowing two sets of experiments show how the
nonsymplectic methods Verlet-1I and Verlet-X suffer from
either instabilities or artifictal dissipation, with both linear
and nonlinear forces.

The primary metric used here to quantify the accuracy of
the results of a simulation is conservation of energy. This
measure is convenient, and it has proven to be a useful
gauge of accuracy for methods not specifically designed to
conserve energy. Very often determining properties of the
system as a whole is what 13 desired, and it is acceptable if
particle trajectories are not at all accurate [1, pp. 76-771.

It should be noted that a distance-class algorithm is
intended to be run one full macro-step at a time, and
positions should not be recorded and statistics sampled in
the middle of a macro-step.

5.1. Experiments with Linear Forces

The first experiment is a one-dimensional simulation of
three particles bound together by two springs of different
stiffnesses, with no other forces considered. (This is a way of
modeling bondlength forces.) The leftmost particle (par-
ticle 1} is bound to the middle particle (particle 2) by spring
1; the middle particle is also bound to the rightmost particle
{particle 3) by spring 2 (Fig. 1).

The potential energy of the system is

{ry, rzs"3)=%k1(|"2_”'1|*11)2"'%]{2”"3_"2'*!2)2-

The parameters and initial conditions for this experiment
are given in Table 1. The initial total energy of the system is

a T T T
6 \/\/\/\_/—
particle 3

2 I particle 2

Position
o

-4 I' particle 1

=& [N NAN AN A NNV

Y " L L
0 5 10 15 20
Time

FIG. 2. Spring experiment, analytic solution of particle trajectories.
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TABLE1

Parameters and Initial Conditjons for Experiment 1

my=my=my=1
rn=—"1r=0r;=7
All particles at rest
ko=16k,=1
li=6,1,=6

Particle masses

Initial positions

Initial velocities

Spring stiffnesses
Equilibrium spring lengths

E,=8.5. Since all of the forces in this experiment are linear,
the analytic solution can be determined to compare against
the approximations. The fundamental frequencies are w, =

17 +./241 = 5702997 and W, =4/17T—. /241 =

1.214836. The solution is

] 17 SRV W
=6+l mytyTar Jeslen T3 2

15./241 15./241
= oo -5 gy eososn
N 14
6+(—_1;8 2i‘:1)cos[w.r)+(i+8\24l )cos(mzr}

Figure 2 shows the analytic solution for a short amount
of time. Formulas for the lengths u, of each spring are

u(ty=ry{t)—r (1)

= 6 +0.95 cos{5.71) + 0.05 cos(1.21),
u (1) =r3(t) — r2(1)

~ 6 —0.50 cos(5.71) + 1.5 cos(1.2¢).

Because spring 1 is stiffer than spring 2, the force it
generates varies more rapidly. So the force of spring 1 is
evaluated each time step, while the force of spring 2 is
evaluated once every N steps. The error in approximating

h =0.01, N =4
190 T T T
8 F 4
5oer 1
=1
5]
—
3 4 4
=}
[
2 [ Verlet—-I — h
Verlet—IT -~
Verlet—X o
0 L L .
0 S00 1000 1500 2000
Time

FIG. 3. Spring experiment, stability of the multiple time step algorithms.
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h=0.02, N=28
10 Y

Total Energy

0 1 s
0 500 1000
Time

1500 2000

FIG. 4. Spring experiment, stability of Verlet-I with doubled step sizes.

spring 1 with a second-order method will be proportional to
1642 and that from spring 2 will be proportional to 1(Nk)2
This suggests that N=4 will be most efficient for this
problem, because it balances the errors.

Comparisons between the algorithms are made with a
total simulation time of ¢,,, = 2000. Thirteen values of # are
tested, geometrically increasing from 0.001 to 0.112; N is
tested at 2, 4, and 8 for each of the A values above.

Figure 3 shows the results of a single run for each method.
The nonsymplectic methods Verlet-1I and Verlet-X produce
substantial energy drift after long-time integration, even

Total Time = 2000, 0.001 <= h < 0.012
le-1 T T T ——Tr
X
El
£
[+
[s)
-
2
» 1e-2 | 4
[o] & ]
[
=1
-
H
[+)
H
H
i
©
El
-l
E
~ le=3 b
&
@ Verlet —-- EQ \
g Verlet-I, N=4 & g N
;4, ' Verlet-I, N=8 -B--
> Verlet-II,N=4 -&—-
< Verlet-II,N=8 -&--
Verlet-X, N=4 *—
Verlet-X, N=8 -%--
1e-4 . PR R AL . s aauuaa
le5 le6 1le7
Number of Force Evaluations (eta)
FIG. 5. Spring experiment, accuracy of trajectory.
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when very small time steps are used. The Verlet-I algorithm
does not experience this problem and conserves energy well
with both N and # doubled (Fig. 4). How rapidly errors
accumulate is related to the stability of an algorithm.

Figures 5 and 6 show statistics of all runs together, with
two different metrics to quantify the accuracy. Each mark.
represents a single run with particular N and # values, and
statistics were sampled s = 100 times for each run. The num-
ber of force evaluations done during the entire simulation
was comparcd against the average error in an attempt to
quantify the efficiency. The number of force evaluations (1)
is equal to the number of macro-steps times the sum of the
number of near force evaluations and far force evaluations
per macro-step. For this experiment,

_ ltoral
=ZE N+,

(16)
For Fig. 5, the average relative error in position (v) is
determined using

1 I
-3 Inhly (7
5, i=1 H[’ ”2
where s is the number of samples taken, and r; and ¥, are the
computed and analytic solutions, respectively, at the time of

the ith sample. Not shown are the results with ¥=2,

Total Time = 2000, 0.001 <= h < 0.012

lel ——— T
X, Verlet ---
AV : Verlet-I, N=2 4#—
5 & Verlet-I, N=4 -
P "A X Verlet-I, N=§ -8--
N le-l | "y Verlet-1I,N=2 —— 3
S x BN Verlet-II,N=4 -+
o RNV Verlet-II,N=8 -&--
g h’._ % Verlet-X, N=2 #—
i g 2 Verlet-x, N={ =*—
i le-2 | W s %, verlet-X, N=§ -¥- J
o A .
o}
=]
g
Ll
g le-3 3 _
M E
H
4
¢
>
-
2 le-4 F 3
u «
4
o
"
]
5
4 le-5 4
0
> .
< N
15_6 PRSP | - R
le3 lebt le?

Number of Force Evaluations (eta)

FIG. 6. Spring experiment, accuracy of total energy.
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particle 2

particle 7

particle 3

particle 1

particle 6

particle 4

particle 5

FIG. 7. Argon experiment, system of particles.

because for all methods N =4 is the most efficient (needing
the fewest number of force evaluations to attain a desired
error level) and N=38 the least. Verlet-I was the most
efficient of the three algorithms for all values of N tested.
From the slopes of the lines, each method is second-order
accurate (note that £ is proportional to 1/x).

For Fig. 6, the average relative error in total energy (£) is
computed with the formula

L E

. (18
B )

1 5
62312

where s is again the number of samples taken and E ; 1s the
total energy at the time of sample /. Total energy appears to
be more sensitive than actual particle positions (perhaps
because it involves terms for velocity, which are not taken

0.3 T T T T
Epsilon = 0.23B83 kcal/mol

0.2 b Sigma = 3.405 Angstroms |
3 0.1} .
£
N
=
5 0
<4
ol -0.1 1
=

_0_2 o 4

0.3 L . L L

3 4 5 6 7 8

r {Angstroms)

FIG. 8. Lennard-Jones pair potential for argon.
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FIG. 9. Argon experiment, stability of the multiple time step algorithms,

into account for Fig. 5). The graph for total energy shows
that each of the symplectic methods is far superior to the
nonsymplectic methods. Note also that Verlet-I is more
efficient than the standard algorithm, even though for this
experiment there 15 not too much room for improvement
(the stiffness ratio is only 16 for the system). Again, Verlet-I
with ¥ =4 is the most efficient. Interestingly, for the other
algorithms N =72 is most efficient with this metric. The
symplectic methods are second-order accurate in energy.
The extrapolation methods exhibit a higher order of accuracy
for energy (third order) with the range of 4 tested. The error
of the two extrapolation methods is likely to be of the form
R () + Hlex(1) + O(h®) with e, > e, so that for fixed 1,
and small enough 4, the second-order effects will dominate.
Because they are more accurate, for any fixed r,, there
may be an & small enough so that an extrapolation method
will beat the symplectic methods. This can be seen at the
right side of Fig, 6. However, because they are not stable, for
any fixed £ given sufficiently large 1,,,,; the extrapolation
methods lose to the symplectic methods.

For large enough 4 and N, Verlet-I also behaves poorly.
The results of this experiment, and of other runs with

h = 64 fsec, W = 4
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FIG. 10. Argoen experiment, stability of Verlet-1 with doubled step size .
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Total Time = 1 nsec, 2 fsec <= h < 22.25 fsec
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le—T i 1 i A 41
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FIG. I1. Argon experiment, accuracy of total energy.

different parameters and initial conditions, indicate that
Verlet-I1 and Verlet-X are unstable for all / but that there
eXists Ayprehoa N) >0 such that Verlet-1 is stable for
h < hthrcshold(N)‘

5.2, Experiments with Nonlinear Forces

This experiment is a simulation of a two-dimensional
frozen argon crystal. As shown in Fig. 7, six argon atoms are
arranged symmetrically around a center atom with a
Lennard-Jones potential between each atom pair. The
potential energy of the system is

wo-s(3"-3),

x)=72 Z (Jfr;—rsliz)-

Recall that x = (¢], 17, .., v )"

The Lennard—Jones potential W(r) is shown in Fig. 8.
The position of lowest potential (and ne force) is at a
distance of r = \‘3/5 o, and the potential energy at this point
is —&. The force repulses the particles strongly when they
are closer than this and attracts them when they are farther.

BIESIADECK! AND SKEEL

TABLE I

Particle masses
Initial positions &)

3995 amu =66.34 x 10~ kg

r, =(0.0,00),r,=(0.239), r;=(34. 1.7),

r,=(36 —21).1,=(—02 —40),

re=(—35, —16),1,=(—31,21)

¥, =(—30, =20}, v, = (50, —90),

¥y = (=70, ~60), v, = (90, 40}, v5 = (80, 90).

. v =(—40, 100), v, = { — 80, —60}

e 120°K &y =120 x 1,380658 x 10~ joules
= 0.2383 kcal/mole

Initial velocities (m/s)

P 3405 A

See also [ 1, pp. 8, 21] for more details and a table of £ and
¢ for various elements.

The initial positions of the particles are siightly perturbed
about those for lowest potential energy (the corners and
center of a perfect hexagon with sides of length \/5 7). They
are given low initial velocities such that the total momen-
tum of the system is zero (see Table I). The initial total
energy of the system is —2.5 kcal/mole. Temperature can be
calculated with the formula

2 ot
k_E’Z

For this two-dimensional experiment, d=2.4" and 4" =7,
Using the conditions above, the initial temperature is
22.72°K, which is very low.

This time the analytic solution to this set of differential
equations is not known. Error in the energy will be used to
measure accuracy here.

The six forces along the outside of the hexagon (between
particles 2 and 3, 3 and 4, etc.} are put in the near class; so
are the six forces involving the center particle, particle 1.
The remaining nine forces are put in the far class. This
includes six forces between alternating particles on the out-
side (particles 2 and 4, 3 and 5, etc.) and the three forces
directly across the hexagon (particles 2 and 5, 3 and 6, and
4 and 7). Because the particles lie nearly on the corners and
center of a hexagon, distances between far particles are
either \/:7; or 2 times as far as distances between near
particles.

The simulation is run for a time of r,,, = 1 ns. Eighteen
values of  are tested, geometrically increasing from 2 fs to
22.25fs. N is tested as before at 2, 4, and 8. Some of these
macro-step sizes are fairly large—they work because the
temperature is so low.

In these experiments, the non-symplectic methods tend to
drift to states of lower energy (Fig. 9). Figure 10 shows that
Verlet-I still conserves energy well with # doubled.

Figure 11 shows similar behavior to that of Fig. 6 of the
first experiment. Again, statistics were sampled 100 times
during each run. Error in total energy £ is computed using
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(18). The formula for the number of force evaluations 7 is
analogous to (16) and is given by

Ilma]
'1—[ i ] (12N +9).

In this experiment, Verlet-I with N =4 was the most
efficient. The symplectic methods were again roughly
second-order accurate in energy and the nonsymplectic
methods were roughly third order for the range of £ tested.
The same conclusions can be drawn from this cxperiment as
from the previous one—for long-time integration, the non-
symplectic methods perform poorly compared to symplectic
methods (even the method that does not use distance
ciasses},

6. NUMERICAL EXPERIMENTS:
ARTIFICIAL RESONANCE

In Section 4, we discussed how the different algorithms
incorporate the “far” force, with the effects felt as intermit-
tent puises in Verlet-1 and more evenly distributed across
the macro-step in the extrapolation methods, This difference
could be important if the impulses of Verlet-I occur near a
natural frequency of the system, because this could cause
resonance in the system. This effect is documented here by
experimentation. Another situation where this might occur
is hypothesized in [6] and later confirmed in [57].

Figure 12 shows the system of four particles for this
experiment. There is a Coulomb interaction between all
particle pairs and a bond (spring) between particies 2 and 3.
The potential energy of the system is

94

|ri_'ﬁ¢.

1 3 4
Vir,ry,rs, r4)=5k(|r3Rr2|—1)2+ Z z

i=1j=i+1

The parameters and initial conditions are given in Table 1L
The initial total energy of the system is 39.05119.

The experiment is set up so that the Coulomb repuision
between particies 1 and 2 is slightly smalier than the sum of
attractions between particles 1 and 3 and between 1 and 4.
This way particle 1 does not move very much during the
simulation, oscillating slightly around its starting position
without colliding into the center particles or being flung
away from the center. The same is true for particle 4. Since

® H~o0 )

particla 1

©

particle 2 particle 3 particle 4

FIG. 12, Resonance experiment, system of particles.
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FIG. 13. Resonance experiment, artificial resonance of Verlet-L.

these particles move only a little and since the center
particles do not get far past +4.5, the Coulomb forces
involving particles | and 4 do not change much and are put
in the “far” class. The spring and Couiomb interaction
between particles 2 and 3 are put in the “near” class.

If the system consisted of only particles 2 and 3, they
would oscillate with some period 7~ 1.0 {measured numeri-
cally). Now considering the system including particles 1 and
4, suppose the new forces are evaluated with a macro-step
size of . In this scenario, Verlet-1 produces resonance
because the far forces add energy to the spring in pulses at
its natural frequency. The actual physical system has no
resonance because the far forces are not impulses but are
continuous. The extrapolation methods approximate this
better than Verlet-I, but for long enough time their inherent
instabilities may dominate.

Figure 13 shows the results of the experiment with a
macro-step size of 1.0~ 1, and 1t can be seen that the
Veriet-1 algorithm is producing larger oscillations of total
energy than the other two algorithms, Figure 14 shows that
by increasing the step size the Verlet-1 algorithm actually
conserves energy much better, which would normally be

h = 0.08, N = 16

40 ‘,..«.\/\ A ha AL
=30 F E
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©
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erlet-X -
0 1 ) L "
0 200 400 600 80D 1000
Time

FIG. 14. Resonance experiment, increased step size,
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TABLE I

Parameters and Initial Conditions for Experiment 3

Particle masses m =06,m,=1,my=1m,=06
Particle charges g=+3q.=+1,g;=—1,g=-3
Initial positions ry==20,r,=—-25r,;=25r,=20
Initial velocities All particles at rest

Spring stiffness k=197

Equilibrium spring fength 1=7

upexpected. Also note that the extrapolation methods are
showing signs of the instability seen in Section 3, although

the step size of 0.08 is perhaps fairly large compared to -

1.0 .

Clearly this experiment is contrived. In a complex
molecule it seems unlikely that an artificial resonance could
sustain itself for any length of time.
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